
LATEX2ε for class and package writers

DRAFT

Copyright c© 1994 The LATEX3 Project

All rights reserved

Preliminary draft June 1994

Contents

1 Introduction 2

1.1 Writing classes and packages for LATEX2ε 2
1.2 Overview . 2
1.3 Further information . 3

2 Writing classes and packages 3

2.1 Is it a class or a package? . 4
2.2 Command names . 4
2.3 Using docstrip . 5
2.4 Loading other files . 5
2.5 Box commands and colour . 6
2.6 General style . 6

3 The structure of a class or package 8

3.1 Identification . 8
3.2 Using classes and packages . 9
3.3 Declaring options . 10
3.4 Declarations . 11
3.5 Example: a local letter class . 12
3.6 Example: a newsletter class . 12

4 Commands for class and package writers 13

4.1 Identification . 13
4.2 Loading files . 14
4.3 Option handling . 15
4.4 Delaying code . 17
4.5 Safe Input Commands . 17
4.6 Generating errors . 18

1

4.7 Defining commands . 19
4.8 Layout parameters . 20

5 Upgrading LATEX 2.09 classes and packages 20

5.1 Try it first! . 20
5.2 Font commands . 21
5.3 Obsolete commands . 21

1 Introduction

This document is an introduction to writing classes and packages for LATEX, with
special attention given to upgrading existing LATEX 2.09 packages to LATEX2ε.
The latter subject will also be covered in an article by Johannes Braams to be
published in TUGboat later this year.

1.1 Writing classes and packages for LATEX2ε

LATEX is a document preparation system that enables the document writer to
concentrate on the contents of their text, without bothering too much about
the formatting of it. For example, chapters are indicated by \chapter{〈title〉}
rather than by selecting 18pt bold.

The file that contains the information about how to turn logical structure (like
‘\chapter’) into formatting (like ‘18pt bold ragged right’) is a document class.
In addition, some features (such as colour or included graphics) are independent
of the document class, and are contained in packages.

One of the largest differences between LATEX 2.09 and LATEX2ε is in the com-
mands used to write packages and classes. In LATEX 2.09, there was very little
support for writing .sty files, and so writers had to resort to using low-level
commands.

LATEX2ε provides high-level commands for structuring packages. It is also much
easier to build classes and packages on top of each other, for example writing a
local technical report class based on article.

1.2 Overview

This document contains an overview of how to write classes and packages for
LATEX. It does not introduce all of the commands necessary to write packages,
which are described in LATEX: A Document Preparation System and The LATEX

Companion. But it does describe the new commands for structuring classes and
packages.

2

Section 2 contains some general advice about writing classes and packages.
It describes the difference between classes and packages, the command
naming conventions, the use of docstrip, how TEX’s primitive file and box
commands interact with LATEX, and some hits about general LATEX style.

Section 3 describes the structure of classes and packages. This includes build-
ing classes and packages on top of other classes and packages, declaring
options and declaring commands. It also contains example classes.

Section 4 lists the new class and package commands.

Section 5 gives advice on how to upgrade existing LATEX 2.09 classes and pack-
ages to LATEX2ε.

1.3 Further information

For a general introduction to LATEX, including the new features of LATEX2ε, you
should read LATEX: A Document Preparation System by Leslie Lamport [3].

A more detailed description of the new features of LATEX, and an overview of
over 150 packages, is to be found in The LATEX Companion by Michel Goossens,
Frank Mittelbach and Alexander Samarin [1].

The LATEX font selection scheme is based on TEX, which is described in The

TEXbook by Donald E. Knuth [2].

There are a number of documentation files which accompany every copy of
LATEX. A copy of LATEX News will come out with each six-monthly re-
lease of LATEX, and is found in the files ltnews*.tex. The author’s guide
LATEX2ε for Authors describes the new LATEX document features, and is kept
in usrguide.tex. LATEX2ε Font Selection describes the LATEX font selection
scheme for class- and package-writers, and is in fntguide.tex.

We are gradually turning the source code for LATEX into a LATEX document
LATEX: the program. This document includes an index of LATEX commands and
can be typeset from source2e.tex.

For more information about TEX and LATEX, please contact your local TEX Users
Group, or the international TEX Users Group, P. O. Box 869, Santa Barbara,
CA 93102-0869, USA, Fax: +1 805 963 8358, E-mail: tug@tug.org.

2 Writing classes and packages

This section gives some general points about writing LATEX classes and packages.

3

2.1 Is it a class or a package?

The first thing to do when you want to put some new LATEX commands in a
file is to decide whether it should be a document class or a package. The rule
of thumb is if the commands could be used with any document class, then make

them a package, and if not, make them a class.

For example, the proc document class changes the appearance of the article

document class. It is of no use with any other document class, so we have
proc.cls rather than proc.sty.

The graphics package, however, provides commands for including images into
a LATEX document. Since these commands can be used with any document class,
we have graphics.sty rather than graphics.cls.

A company might have a local ownlet class for printing letters with their own
headed notepaper. Such a class would build on top of the existing letter class,
but cannot be used with any other document class, so we have ownlet.cls

rather than ownlet.sty.

2.2 Command names

LATEX has three types of command.

There are the author commands, such as \section, \emph and \times. Most
of these have short names, all in lower case.

There are the class and package writer commands, such as \InputIfFileExists,
\RequirePackage and \PassOptionsToClass. Most of these have long mixed-
case names.

Finally, there are the internal commands used in the LATEX implementation, such
as \@tempcnta, \@ifnextchar and \@eha. Most of these commands contain @ in
their name, which means they cannot be accessed in documents, only in classes
and packages.

Unfortunately, for historical reasons, the distinction between these commands
is often blurred. For example, \hbox is an internal command which should only
be used in the LATEX kernel, whereas \m@ne is the constant −1 and could have
been \MinusOne.

The rule of thumb still applies: if a command has @ in its name, then it is not
part of the supported LATEX language, and its behaviour may change in future
releases. If a command is mixed-case, or is described in LATEX: A Document

Preparation System, then you can rely on future releases of LATEX2ε supporting
the command.

4

2.3 Using docstrip

If you are going to write a large class or package for LATEX, you should consider
using the docstrip software which comes with LATEX.

LATEX classes and packages written using docstrip can be processed in two
ways: they can be run through LATEX, to produce documentation, and they can
be processed with docstrip to produce the .cls or .sty file.

The docstrip software can automatically generate indexes of definitions, in-
dexes of command use, and change log lists. It is very useful for maintaining
and documenting large TEX sources.

The LATEX kernel itself is a docstrip document—you can read the source code
as one long document by running LATEX on source2e.tex.

For more information on docstrip, consult the docstrip documentation or
The LATEX Companion.

2.4 Loading other files

LATEX provides the commands \LoadClass and \RequirePackage for using
classes or packages inside other classes or packages. We highly recommend you
use them, rather than the primitive \input command, for a number of reasons.

Files loaded with \input 〈filename〉 will not be listed in the \filecontents

list.

If a package is requested more than once with \RequirePackageor \usepackage
it will only be loaded once. If it is loaded with \input, then it will be load-
ed more than once, which may waste time and memory, and produce strange
results.

If a package provides option-processing, then this can produces strange results if
the package is \input rather than loaded with \usepackage or \RequirePackage.

If the package foo.sty loads the package baz.sty with \input baz.sty, then
the user will get a warning:

LaTeX Warning: You have requested package ‘foo’,

but the package provides ‘baz’.

So using \input to load packages is not a good idea.

Unfortunately, if you are upgrading a class file myclass, you have to make sure
that any old files which contain \input myclass.sty still work. This is par-
ticularly true of the standard classes article, book and report, since a lot
of existing LATEX 2.09 document styles contain \input article.sty. The ap-
proach which we took was to provide minimal files article.sty, book.sty and
report.sty, which load the appropriate class files. For example, article.sty
contains:

5

\NeedsTeXFormat{LaTeX2e}

\@obsoletefile{article.sty}{article.cls}

\LoadClass{article}

You may wish to do the same, or if you think that it’s safe to do so, you may
decide to just remove myclass.sty.

2.5 Box commands and colour

Even if you do not intend to use colour in your own documents, by taking note of
the points in this section you can ensure that your class or package is compatible
with the color package. This may benefit other people using your class who may
have access to colour printers.

The simplest way to ensure ‘colour safety’ is to always use LATEX box commands
rather than TEX primitives, that is use \sbox rather than \setbox, \mbox rather
than \hbox and \parbox or \minipage rather than \vbox. The LATEX box
commands have new options which mean they are now as powerful as the TEX
primitives.

As an example of what can go wrong, consider that in a {\ttfamily 〈text〉} the
font is restored just before the }, whereas in the similar looking {\color{green} 〈text〉}
the colour is restored just after the final }. Normally this distinction does not
matter at all, but consider a primitive TEX box assignment such as:

\setbox0=\hbox{\color{green} 〈text〉}

Now the colour-restore occurs after the } and so is not stored in the box. Exactly
what bad effects this can have depends on how colour is implemented, but it can
range from getting the wrong colours in the rest of the document, to causing
errors in the dvi-driver used to print the document.

Also of interest is the command \normalcolor. Again this is normally just
\relax but you can use it rather like \normalfont to set regions of the page
such as captions or section headings to the ‘main document colour’.

2.6 General style

Apart from the changes you need to make to get your document class or package
running again there are also a few changes that we encourage you to make.

We consider it good practice, when writing packages and classes, to use LATEX
commands as much as possible. So instead of using \def... we recommend
using one of \newcommand, \renewcommand or \providecommand. Doing that
makes it less likely that you inadvertently redefine a command, giving unex-
pected results.

6

When you define an environment use \newenvironment or \renewenvironment
instead \def\foo{...} and \def\endfoo{...}.

If you need to set or change the value of a 〈dimen〉 or 〈skip〉 register, use
\setlength.

To manipulate boxes, use LATEX commands such as \sbox, \mbox and \parbox

rather than \setbox, \hbox and \vbox.

The advantage of this practice is that your code is more readable and, more
important, that it is less likely to break when future versions of LATEX are made
available.

Some packages and document styles had to redefine the command \begin{document}
or \end{document} to acheive their goal. This is no longer necessary. You can
now use the ‘hooks’ \AtBeginDocument and \AtEndDocument. Again, using
these hooks makes it less likely that your code breaks when future versions of
LATEX arrive. It makes it also more likely that your package can work together
with someone else’s.

Use \PackageError, \PackageWarning or \PackageInfo (or the equivalent
class commands) rather than \@latexerr, \@warning or \wlog.

It is very useful for exchanging files if your files are as portable as possible. They
should only contain visible 7-bit text, and the filenames should be eight letters
(plus the three letter extension). It is also useful if local classes or packages have
a common prefix, for example the University of Nowhere classes might begin
with unw. This helps to avoid every University having its own thesis class, all
called thesis.cls.

It is still possible to declare options by defining \ds@〈option〉 and calling
\@options, but we recommend using the \DeclareOptionsand \ProcessOptions
commands instead. These are more powerful and use less memory. So rather
than saying:

\def\ds@draft{\overfullrule 5pt}

\@options

you should say:

\DeclareOption{draft}{\setlength{\overfullrule}{5pt}}

\ProcessOptions

If you rely on some features of the LATEX kernel, or on a package, please specify
the release-date you need. For example, the package error commands were
introduced in the June 1994 release, so if you use them, you should say:

\NeedsTeXFormat{LaTeX2e}[1994/06/01]

7

If you are upgrading an existing LATEX 2.09 style file, we recommend freezing the
2.09 version, and no longer maintaining it. Experience with the various dialects
of LATEX which existed in the early 1990’s suggests that maintaining packages
for different versions of LATEX is almost impossible. We recommend maintaining
classes and packages only for LATEX2ε, and not for obsolete versions of LATEX.

3 The structure of a class or package

LATEX2ε classes and packages have more structure than LATEX 2.09 style files
did. The outline of a class or package is:

identification The file says that it is a LATEX2ε package or class, and gives a
short description of itself.

declarations The file declares some commands, and can also load other files.
Usually these commands will be just for defining commands used in the
options.

options The file declares and processes its options.

more declarations This is where the file does most of its work, declaring new
variables, commands, fonts, and loading other files.

3.1 Identification

The first thing a class or package does is identify itself. Packages do this by
saying:

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{〈package〉}[〈date〉 〈other information〉]

for example:

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{latexsym}[1994/06/01 Standard LaTeX package]

Classes do this by saying:

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{〈class-name〉}[〈date〉 〈other information〉]

for example:

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{article}[1994/06/01 Standard LaTeX class]

8

The 〈date〉 should be given in the form ‘yyyy/mm/dd’. This date is checked
whenever a user specifies a date in their \documentclass or \usepackage com-
mand. For example, if a user said:

\documentclass{article}[1995/12/23]

then they would get a warning that their copy of article was out of date.

The description of a class is printed out when the class is used. The description
of a package is put into the log file. These descriptions are also produced by
\listfiles.

3.2 Using classes and packages

The first major difference between LATEX 2.09 style files and LATEX2ε packages
and classes is that LATEX2ε supportsmodularity, that is building files from small
building-blocks rather than large single files.

A LATEX package or class can load a package by saying:

\RequirePackage[〈options〉]{〈package〉}[〈date〉]

for example:

\RequirePackage{ifthen}[1994/06/01]

This command has the same syntax as the author command \usepackage. It al-
lows packages or classes to use features provided by other packages. For example,
by loading the ifthen package, a package writer can use the ‘if. . . then. . . else. . . ’
commands provided by that package.

A LATEX class can load another class by saying:

\LoadClass[〈options〉]{〈class-name〉}{〈date〉}

for example:

\LoadClass[twocolumn]{article}

This command has the same syntax as the author command \documentclass.
It allows classes to be based on the syntax and appearance of another class. For
example, by loading the article class, a class writer only has to change the
bits of article they don’t like, rather than writing a new class from scratch.

9

3.3 Declaring options

The other major difference between LATEX 2.09 styles and LATEX2ε packages
and classes is in option handling. Packages and classes can now declare options,
which can be used by authors, for example the twocolumn option to the article
class.

An option is declared by saying:

\DeclareOption{〈option〉}{〈code〉}

for example the dvips option to the graphics package is implemented as:

\DeclareOption{dvips}{\input{dvips.def}}

This means that when an author says \usepackage[dvips]{graphics}, the
file dvips.def is loaded. As another example, the a4paper option is declared
in the article class to set the \paperheight and \paperwidth lengths:

\DeclareOption{a4paper}{%

\setlength{\paperheight}{297mm}%

\setlength{\paperwidth}{210mm}%

}

Sometimes a user will request an option which the class or package has not
explicitly declared. By default this will produce a warning (for classes) or error
(for packages), but this behaviour can be altered, by saying:

\DeclareOption*{〈code〉}

for example to make the package fred produce a warning rather than an error,
you could say:

\DeclareOption*{%

\PackageWarning{fred}{Unknown option ‘\CurrentOption’}%

}

then if an author says \usepackage[foo]{fred} they will get a warning
Package fred Warning: Unknown option ‘foo’. As another example, the
fontenc package troes to load a file 〈encoding〉enc.def whenever the 〈encoding〉
option is used. This can be done by saying:

\DeclareOption*{%

\input{\CurrentOption enc.def}%

}

It is possible to pass options on to another package or class, using the command
\PassOptionsToPackage or \PassOptionsToClass. For example, to pass every
unknown option on to the article class, you can say:

10

\DeclareOption*{%

\PassOptionsToClass{\CurrentOption}{article}%

}

If you do this, you should make sure you load the class, otherwise the options
will never be processed!

So far, we have only seen how to declare options, and not how to execute them.
To process the options which the file was called with, you say:

\ProcessOptions

This executes the 〈code〉 for each option that was declared (see Section 4.3 for
details of how this is done).

For example, if the jane package says:

\DeclareOption{foo}{\typeout{Saw foo.}}

\DeclareOption{baz}{\typeout{Saw baz.}}

\DeclareOption*{\typeout{What’s \CurrentOption?}}

\ProcessOptions

and an author says \usepackage[foo,bar]{jane}, then they will see the mes-
sages Saw foo and What’s bar?

3.4 Declarations

Most of the work of a class or package is in defining new commands, or changing
the appearance of documents. This is done in the body of the package, using
commands such as \newcommand, \setlength and \setbox.

However, there are some new commands for helping class and package writers.
These are described in detail in Section 4.

There are three definitions that every classmust provide. These are \normalsize,
\textwidth and \textheight. So a minimal document class file is:

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{minimal}[1994/04/01 Minimal class]

\renewcommand{\normalsize}{\fontsize{10}{12}\selectfont}

\setlength{\textwidth}{6.5in}

\setlength{\textheight}{8in}

However, most classes will provide more than this!

11

3.5 Example: a local letter class

A company may have its own letter class, for setting letters in the company
style. This section shows a simple implementation of such a class, although a
real class would need more structure.

The class begins by announcing itself as neplet.cls.

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{neplet}[1995/04/01 NonExistent Press letter class]

Then it passes any options on to the letter class, which is loaded with the
a4paper option.

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{letter}}

\ProcessOptions

\LoadClass[a4paper]{letter}

Then it uses the comany letter head. This is done by redefining the firstpage
page style, since this is the page style that is used on the first page of letters.

\renewcommand{\ps@firstpage}{%

\renewcommand{\@oddhead}{〈letterhead goes here〉}%
\renewcommand{\@oddfoot}{〈letterfoot goes here〉}%

}

And that’s it!

3.6 Example: a newsletter class

A simple newsletter can be set in LATEX, using a variant of the article class.
The class begins by announcing itself as smplnews.cls.

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{smplnews}[1995/04/01 The Simple News newsletter class]

Then it passes any options on to the article class, apart from the onecolumn
option, which is switched off, and the green option, which sets the headline in
green.

\newcommand{\headlinecolor}{\normalcolor}

\DeclareOption{onecolumn}{\OptionNotUsed}

\DeclareOption{green}{\renewcommand{\headlinecolor}{\color{green}}}

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}

\ProcessOptions

\LoadClass[twocolumn]{article}

12

Since we’re using colour, we load the color package. We don’t specify a device
driver, which should be specified by the user of the smplnews class.

\RequirePackage{color}

The class then redefines \maketitle to produce the title in 72pt Helvetica bold
oblique, in the appropriate colour.

\renewcommand{\maketitle}{%

\twocolumn[%

\fontsize{72}{80}\fontfamily{phv}\fontseries{b}%

\fontshape{sl}\selectfont\headlinecolor

\@title

]%

}

It redefines \section and switches off section numbering.

\renewcommand{\section}{%

\@startsection

{section}{1}{0pt}{-1.5ex plus -1ex minus -.2ex}%

{1ex plus .2ex}{\large\sffamily\slshape\headlinecolor}%

}

\setcounter{secnumdepth}{0}

In practice, a class would need more than this: it ought to set the page sizes,
provide commands for issue numbers, authors of articles, page styles and so on,
but this skeleton gives a start. The ltnews class is not much more complex
than this one.

4 Commands for class and package writers

This section describes each of the new commands for class and package writers.
You should also read the commands described in LATEX: A Document Prepara-

tion System, The LATEX Companion and LATEX2ε for Authors.

4.1 Identification

The first group of commands to be discussed are the ones that are used in
identifying your class or package file.

\NeedsTeXFormat {〈format-name〉} [〈release-date〉]

This command tells TEX that it has to be processed using a format with name
〈format-name〉. With 〈release-date〉 one can specify the earliest release date of

13

the format that should still work. When the release date of the format is older
than the one specified a warning will be generated. The standard 〈format-name〉
is LaTeX2e. The date, if present, must be in the form yyyy/mm/dd.

Example:

\NeedsTeXFormat{LaTeX2e}[1994/06/01]

\ProvidesClass {〈class-name〉} [〈release-info〉]
\ProvidesPackage {〈package-name〉} [〈release-info〉]

This declares that the current file contains the definitions for the document
class 〈class-name〉 or package 〈package-name〉. The optional 〈release-info〉 con-
tains the release date in the form yyyy/mm/dd, followed by the version of
the file, optionally followed by a short description. The date information can
be used by \LoadClass or \documentclass (for classes) or \RequirePackage
or \usepackage (for packages) to test if the release is not obsolete. The full
information is displayed by \listfiles and should therefore not be too long.

Example:

\ProvidesClass{article}[1994/06/01 v1.0 Standard LaTeX class]

\ProvidesPackage{ifthen}[1994/06/01 v1.0 Standard LaTeX package]

\ProvidesFile {〈file-name〉} [〈release-info〉]

As for the two previous commands, but here the full filename, including the
extension must be given. Used for declaring any files other than main class and
package files.

Example:

\ProvidesFile{T1enc.def}[1994/06/01 Standard LaTeX file]

4.2 Loading files

This group of commands can be used to build your own document class or
package upon existing classes or packages.

\RequirePackage [〈options-list〉] {〈package-name〉} [〈release-info〉]

With this command, packages and classes can load other packages and classes.
Its use is the same as the author command \usepackage.

Example:

\RequirePackage{ifthen}[1994/06/01]

14

\LoadClass [〈options-list〉] {〈package-name〉} [〈release-info〉]

This command is similar to \RequirePackage, but it is for use by classes only,
and must not be used in packages files.

Example:

\LoadClass{article}[1994/06/01]

\PassOptionsToClass {〈options-list〉} {〈class-name〉}
\PassOptionsToPackage {〈options-list〉} {〈package-name〉}

With this command, packages can pass options to another package. This
adds the 〈option-list〉 to the list of options of any future \RequirePackage

or \usepackage command for package 〈package-name〉.

Example:

\PassOptionsToPackage{foo,bar}{fred}

\RequirePackage[baz]{fred}

is the same as:

\RequirePackage[foo,bar,baz]{fred}

Similarly, \PassOptionsToClass may be used to pass options to a class.

4.3 Option handling

The following commands deal with the declaration and handling of options to
document classes and packages.

\DeclareOption {〈option-name〉} {〈code〉}

Declares 〈option-name〉 to be an option for the current class or package and
〈code〉 the code to be executed if that option is specified.

The 〈code〉 can contain any valid LATEX2ε construct, plus some special com-
mands for use within this argument which are described below.

Example:

\DeclareOption{twoside}{\@twosidetrue}

\DeclareOption* {〈code〉}

Declares 〈code〉 to be executed for every option which is otherwise not explicitly
declared. By default, undeclared options to a class will be silently passed to all

15

packages (just like the declared options for the class); undeclared options to a
package will produce an error.

The 〈code〉 can contain any valid LATEX2ε construct, plus some special com-
mands for use within this argument which are described below.

\CurrentOption

Refers to the name of the current option within the 〈code〉 of \DeclareOption
or \DeclareOption*.

\ProcessOptions

These commands execute the 〈code〉 for each selected option.

We shall first describe how \ProcessOptions works in packages, and then de-
scribe classes.

To understand in detail what \ProcessOptions does, you have to know the
difference between local and global options. Local options are those which
have been explicitly passed to the package with \PassOptionsToPackage,
\usepackage[〈options〉] or \RequirePackage[〈options〉]. For example if the
fred package is called with:

\documentclass[german,twocolumn]{article}

\PassOptionsToPackage{dvips}{fred}

\RequirePackage[errorshow]{fred}

then fred’s local options are german, errorshow and dvips, and the only global
option is twocolumn. Then when \ProcessOptions is called, the following
happen:

• For each option declared by \DeclareOption, it looks to see if that option
has been requested. If it has, the corresponding code is executed.

• Then for each remaining option in the local option list, \ds@〈option〉 is
executed if it exits, otherwise the default option is executed. If no default
option has been declared, then an error is raised.

For example, if fred.sty contains:

\DeclareOption{dvips}{\typeout{DVIPS}}

\DeclareOption{german}{\typeout{GERMAN}}

\DeclareOption{french}{\typeout{FRENCH}}

\DeclareOption*{\PackageWarning{fred}{Unknown ‘\CurrentOption’}}

\ProcessOptions

then the result will be:

16

DVIPS

GERMAN

Package fred Warning: Unknown ‘errorshow’.

Note that the dvips option is executed before the german option, because that
is the order they are declared in fred.sty. Also note that the errorshow option
produces a warning, but the twocolumn option does not, because twocolumn is
a global option.

In classes, \ProcessOptions is the same, except that all options are local, and
that the default value for \DeclareOption* is \OptionNotUsed rather than an
error.

\ProcessOptions*

Like \ProcessOptions but executes the options in the order specified in the
calling command, rather than in the order specified in the class or package. The
\@options command from LATEX 2.09 has been made equivalent to this in order
to ease the task of updating old document styles to LATEX2ε class files.

4.4 Delaying code

\AtEndOfClass {〈code〉}
\AtEndOfPackage {〈code〉}

These commands cause 〈code〉 to be saved away in an internal hook, and then
executed at the end of the current class or package. Repeated use of the com-
mands work, and the arguments are executed in the order they are declared.

\AtBeginDocument {〈code〉}
\AtEndDocument {〈code〉}

These commands cause 〈code〉 to be saved internally and executed while LATEX
is executing \begin{document} or \end{document}.

Note that the 〈code〉 specified in the argumnent to \AtEndDocument is executed
before any leftover floating environments are processed. If you need your code
to be executed after that you may want to include a \clearpage in 〈code〉.

4.5 Safe Input Commands

These commands deal with reading a file; they have been implemented in such a
way that the case that the file doesn’t existed can be handled in a user-friendly
way.

17

\InputIfFileExists {〈file-name〉} {〈true〉} {〈false〉}

Inputs the file 〈file-name〉 if it exists. Immediately before the input, the code
specified in 〈true〉 is executed. Otherwise the code specified in 〈false〉 is execut-
ed.

\IfFileExists {〈file-name〉} {〈true〉} {〈false〉}

As above, but this command does not input the file. One thing that you might
like to put in the 〈false〉 clause is:

4.6 Generating errors

These commands are used by third party classes and packages to report errors,
or to provide information to authors.

\ClassError {〈class-name〉} {〈error〉} {〈help〉}
\PackageError {〈package-name〉} {〈error〉} {〈help〉}

These produce an error message. The 〈error〉 is displayed, and the error prompt
is shown. If the user types h, they will be shown the 〈help〉 information.

Within the 〈error〉 or 〈class-name〉, \protect can be used to stop a command
from expanding, \MessageBreak causes a line-break, and \space prints a space.
For example:

\newcommand{\foo}{FOO}

\PackageError{ethel}{%

Your hovercraft is full of eels,\MessageBreak

and \protect\foo\space is \foo

}{%

Oh dear.\MessageBreak Something’s gone wrong.

}

produces:

! Package ethel Error: Your hovercraft is full of eels,

(ethel) and \foo is FOO.

See the ethel package documentation for explanation.

If the user types h, they will be shown:

Oh dear.

Something’s gone wrong.

18

\ClassWarning {〈class-name〉} {〈warning〉}
\PackageWarning {〈package-name〉} {〈warning〉}
\ClassWarningNoLine {〈class-name〉} {〈warning〉}
\PackageWarningNoLine {〈package-name〉} {〈warning〉}

These commands are similar, but produce warnings on the screen. The Warning
versions show the line number where the warning ocurred, and the NoLine

versions do not.

\ClassInfo {〈class-name〉} {〈info〉}
\PackageInfo {〈package-name〉} {〈info〉}

These commands are similar, but produce information in the log file.

\MessageBreak

Produces a line-break in an error, warning or info message.

4.7 Defining commands

LATEX2ε contains a number of new commands that are meant to be used in
class and package files.

\DeclareRobustCommand {〈cmd〉} [〈num〉] [〈default〉] {〈definition〉}

This command takes the same arguments as \newcommand but it declares a
robust command, even if the 〈definition〉 is fragile. You can use this command
to define new commands, or redefine existing commands.

Example:

\DeclareRobustCommand{\seq}[2][n]{%

\ifmmode

#1_{1}\ldots#1_{#2}%

\else

\PackageWarning{fred}{You can’t use \protect\seq\space in text}%

\fi

}

Now \seq can be used in moving arguments, even though \ifmmode cannot, for
example:

\section{Stuff about sequences \seq{x}}

\CheckCommand {〈cmd〉} [〈num〉] [〈default〉] {〈definition〉}

This takes the same arguments as \newcommand but, rather than define 〈cmd〉,

19

it checks that the current definition of 〈cmd〉 is 〈definition〉. An error is raised
if the definition is different.

This command may be useful for checking the state of the system before your
package starts altering command definitions. It allows you to check that no
other package has redefined the same command.

4.8 Layout parameters

\paperheight

\paperwidth

These two parameters are usually set by the class to be the size of the paper be-
ing used. This should be actual paper size, unlike \textwidth and \textheight

which are the size of the main text body within the margins.

5 Upgrading LATEX 2.09 classes and packages

This section describes how to upgrade any existing LATEX styles to packages or
classes.

5.1 Try it first!

The first thing you should do with an old style is try to run a LATEX2ε document
that uses it unmodified. This assumes that you have a suitable test set that
tests all functionality provided by the style file. (If you haven’t, now is the time
to make one!) Please run the test document in both LATEX2ε native mode,
and LATEX 2.09 compatibility mode, since some old styles will only work in
compatibility mode.

Many existing style files will run with LATEX2ε without any modification. If it
does run, please enter a note into the file that you have checked that it runs,
and distribute it to your users. You might like to take the opportunity to make
use of the new document structuring commands.

If your style file does not work with LATEX2ε, there are two likely reasons. LATEX
now has a robust, well-defined designer’s interface for selecting fonts, which is
very different from the LATEX 2.09 internals. And your style file may have used
some LATEX 2.09 internal commands which have changed, or which have been
removed.

20

5.2 Font commands

Some commands are now defined by the document class rather than by the
LATEX kernel. If you are upgrading a LATEX 2.09 document style, you should
add definitions for these commands.

\rm \sf \tt \bf \it \sl \sc

The LATEX 2.09 font selection commands are now defined in the document class.
They are defined in the kernel to produce an error message.

\normalsize

\@normalsize

The command \@normalsize is retained for compatibility with LATEX 2.09 pack-
ages which may have used it, but it is now defined in the kernel by:

\newcommand{\@normalsize}{\normalsize}

This means that classes should now define \normalsize rather than \@normalsize,
for example:

\renewcommand{\normalsize}{\fontsize{10}{12}\selectfont}

Note that \normalsize is defined by the LATEX kernel to be an error message,
whereas the other size-changing commands \tiny, \footnotesize, \small,
\large, \Large, \LARGE, \huge and \Huge are not defined at all. This means
you should use \renewcommand for \normalsize and \newcommand for the other
commands.

5.3 Obsolete commands

Some packages will not work with LATEX2ε, normally because they relied on an
internal LATEX command which was never supported, and has now changed, or
been removed.

In many cases there will now be a robust, high-level means of achieving what
previously required low-level commands. Please consult Section 4 to see if you
can use the LATEX2ε class and package writers commands.

Too many of the internal commands of LATEX 2.09 have been re-implemented
to list here. We will list some of the more important commands which are no
longer supported.

21

\tenrm \elvrm \twlrm . . .

\tenbf \elvbf \twlbf . . .

\tensf \elvsf \twlsf . . .

.

.

.

The seventy pre-loaded LATEX 2.09 fonts are now no longer pre-loaded. If your
package uses them, then please replace them with new font commands described
in LATEX2ε Font Selection. For example the command \twlsf could be replaced
by:

\fontsize{12}{14}\sffamily

Another possibility is to use the rawfonts package, described in LATEX2ε for

Authors.

\prm, \pbf, \ppounds, \pLaTeX . . .

LATEX 2.09 used commands beginning with \p for ‘protected’ commands. For
example, \LaTeX was defined to be \protect\pLaTeX, and \pLaTeX produced
the LATEX logo. This made \LaTeX robust, even though \pLaTeX was not. These
commands have now been reimplemented using \DeclareRobustCommand (de-
scribed in Section 4.7). If your package redefined one of the \p-commands, you
should replace the redefinition by one using \DeclareProtectedCommand.

\vpt \vipt \viipt . . .

These commands used to be the internal size-selecting commands in LATEX 2.09.
They are still supported in LATEX 2.09 compatibility mode, but not in native
mode. Please use the command \fontsize instead (see LATEX2ε Font Selection

for details) for example replace \vpt with \fontsize{5}{6}\selectfont.

\footheight

\@maxsep

\@dblmaxsep

These parameters are not used by LATEX2ε, and so have been removed, except
for in LATEX 2.09 compatibility mode. Classes should no longer set them.

References

[1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX

Companion. Addison-Wesley, Reading, Massachusetts, 1994.

[2] Donald E. Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts,
1986. Revised to cover TEX3, 1991.

22

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley,
Reading, Massachusetts, second edition, 1994.

23

